Molecular modeling kits are stationary and require that a chemist (or student) spend a lot of time constructing a molecule. Besides, they're kind of boring.
Virtual Reality models with tactile feedback have been built, but are cumbersome and expensive. Modeling reactions takes a lot of computational
cycles.
Each "atom" in RoboMol is equipped with a (rechargeable) battery, electromagnets, and a small processor. It senses whatever other "atoms" its touching and turns the appropriate electromagnets on or off for attachment, representing various types of links. (Each unit is programmed to simulate the atom based on our current knowledge of quantum mechanics and chemical bonding).
The "chemical" behavior emerges from the interactions of these "atoms" allowing chemists, biologists, and students to get an intuitive feel for all sorts of reactions. Optionally, the atoms can have LCD or OLED display surfaces that indicate the type of bond formed, electron density, etc.
Suspended in a percolating fluid that makes the "atoms" neutrally buoyant, this kit could also be used to simulate reactions in a macroscopic scale. For example, a student can "see" ice crystals form when six water "molecules" are tossed together. Other, more complicated reactions (e.g., antibody-antigen interactions, protein folding, etc.) can be simulated in real-time, without the need for complex computational simulaiton.
"RoboMol Pro", the professional version, will integrate with popular Cheminformatics packages. In this version, every "molecule" of contiguously linked atoms reports its linkage information to a base station attached to a computer. The computer automatically identifies the "molecule" if it is known, list similar known molecules, and show its 3-D structure, export it to RasMol for visualization and sharing with colleagues, etc.