h a l f b a k e r y"It would work, if you can find alternatives to each of the steps involved in this process."
add, search, annotate, link, view, overview, recent, by name, random
news, help, about, links, report a problem
browse anonymously,
or get an account
and write.
register,
|
|
|
For re-entry from orbit, a critical factor is dissipating
orbital kinetic energy into the atmosphere to slow the
spacecraft down. The most popular way of doing this is to
have a roughly-conical reentry vehicle with ablative heat
shields on the scorchy side. Made of expensive, fragile
materials
that burn up, these release a somewhat
protective ionised gas boundary layer that radiates away
the heat/energy.
The rate of heating and the total heat are critical to re-
entry and together dictate the re-entry strategy/design. A
steep entry reduces the total heat, but increases the peak
heating. A shallow entry, the reverse.
The area of the re-entry body is critical to the rate of
heating, and the heat per unit area of airframe. But wind-
facing area is generally dictated by the launch
architecture.
So, this idea is to have a re-entry body that has a large
effective area of a springy perhaps carbon composite
semi-ablative canopy - the springiness allows the fronds to
be folded compactly within the launch vehicle. Once
unfurled, they deliver drag and dissipate heat, but over a
much larger area.
Inflatable instead of springy
https://www.google....gB&biw=1920&bih=979 Sort-of like this? [neutrinos_shadow, Oct 16 2019]
Please log in.
If you're not logged in,
you can see what this page
looks like, but you will
not be able to add anything.
Destination URL.
E.g., https://www.coffee.com/
Description (displayed with the short name and URL.)
|
|
Sounds a lot like the aerobraking volute demonstrated by the "Leonov" in the movie 2010. |
|
| |