h a l f b a k e r yLike a magnifying lens, only with rocks.
add, search, annotate, link, view, overview, recent, by name, random
news, help, about, links, report a problem
browse anonymously,
or get an account
and write.
register,
|
|
|
|
People make so much of machine-human interfaces, but it's
been going on, gradually, for centuries, starting with writing,
the place-value system, movable type, telephone,
television, computers, internet .... What's so special about
surgically implanted devices? Our sensory and motor systems
are still,
in 2011, more sophisticated interfaces than anything
implantable, and, other than the cool factor what's so special
about direct cortical stimulation? |
|
|
A quick Wikipedia scan shows a reference to the
word Cyborg in 1960. The idea of using a "protocol"
for communication must predate Morse, to use a
"recent" example. |
|
|
While the earliest appearances
of direct machine interfaces did not necessarily
detail a protocol, it's difficult to characterize this as
a new idea in any meaningful sense. |
|
|
Sorry, I don't get it. So the computer sends an output to the user's visual cortex. Fine, that's already been done through a biometric implant - no biggie there. But then what? The user "respond(s) to the computer with what it's trying to say" - How? Using a non-brain-interface like a keyboard and screen? Directly pressing a button? How does the user get to communicate back to the computer in this set-up? And shouldn't the whole communication loop be 'in-brain'? And if so, you need to connect the computer up to specific bits of the brain to monitor incoming traffic - something that is going to be tricky to do without invasive and 'interactive' surgury. i.e. your hardware connections have to be made at specific points in the human's CNS prior to the human getting the chance to 'negotiate' where these points are via your protocol. |
|
| |