I was recently reading about the Magnus Effect, and how it can be used to make efficient air turbines for power generation, and for a (boat) propellor.
If it can be used for a propellor, why not as a gas compressor?-- goldbb, Jul 02 2009 it doesn't look like a good design for producing a high differential of pressure such as you would have between the inlet and outlet of an air compressor. sorry.-- WcW, Jul 03 2009 Why not?-- goldbb, Jul 09 2009 to function efficiently at an increasing differential of pressure a compressor needs to be increasingly positive (resistant to back flow). A fan may be good at harnessing or producing a differential of a few psi from one side to the other but it cannot efficiently "pump" air beyond that point, the tendency of the air to simply leak back being greater than the blades can overcome.-- WcW, Jul 09 2009 Almost by definition an effective wind turbine is not going to be a good compressor. It's inherent in a turbine design that it is attempting to extract as much work as possible at the lowest pressure differential. A 12 MPH wind, which is about where most turbines kick below 30 MPH, or .01 PSI.The fastest propellor aircraft on record managed a forward speed of 541 mph, a wind pressure of about 5 PSI. Efficient energy extraction is not the reverse of efficient compression.-- MechE, Jul 10 2009 I think this is a fantastic idea. Since the idea of Magus 'blades' is to emulate an aerofoil there should be no reason this can't work as an axial compressor. I should point out that a fan/propellor is a single stage compressor. Your pressure differential is always limited over one stage (particularly in aerodynamic compressors)-- sneakythumbs, Jan 07 2010 even if we eliminate the other complexities I still don't think that a bunch of these in series is going to be a superior compressor design.-- WcW, Jan 08 2010 random, halfbakery